


Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

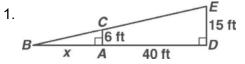
## **Practice B**

| 1. | 5.4                                                                                      | 2. 20                                                         |  |
|----|------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| 3. |                                                                                          | 8. $\frac{LP}{PN} = \frac{9}{66} = \frac{3}{22}$ and          |  |
|    | $\frac{LQ}{QM} = \frac{12}{88} = \frac{3}{22}$ . Beca                                    | ause $\frac{LP}{PN} = \frac{LQ}{QM}, \overline{PQ} \parallel$ |  |
|    | $\overline{\textit{NM}}$ by the Conv. of the $\triangle$<br>Proportionality Thm.         |                                                               |  |
| 4. | $\frac{FW}{WD} = \frac{1.5}{2.5} = \frac{3}{5}$ and $\frac{1}{2}$                        | $\frac{FX}{XE} = \frac{2.1}{3.5} = \frac{3}{5}.$              |  |
|    | Because $\frac{FW}{WD} = \frac{FX}{XE}$ , $\overline{WX} \parallel \overline{DE}$ by the |                                                               |  |

Conv. of the  $\triangle$  Proportionality Thm.

- 5. *SR* = 56; *RQ* = 42
- 6. BE = 1.25; DE = 1 7. isosceles

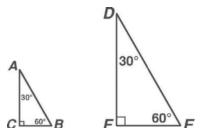
## **Practice C**


1. Possible answer: It is given that  $\overline{EF} \parallel \overline{BC}$ .  $\angle B$  corresponds to  $\angle AEF$  and  $\angle C$ corresponds to ∠AFE on the transversals, so  $\angle B \cong \angle AEF$  and  $\angle C \cong$  $\angle AFE$ . Thus,  $\triangle ABC \sim \triangle AEF$  by the AA Similarity Postulate. By the definition of similar polygons,  $\frac{AB}{AF} = \frac{AC}{AF}$ . But by the Segment Addition Postulate, AB = AE +*EB* and AC = AF + FC. Substitution leads to  $\frac{AE + EB}{AE} = \frac{AF + FC}{AF}$ . This can be simplified to  $1 + \frac{EB}{AF} = 1 + \frac{FC}{AF}$ . The Subtraction Property of Equality shows that  $\frac{EB}{AF} = \frac{FC}{AF}$ , which can be rewritten as  $\frac{AE}{EB} = \frac{AF}{FC}$ 2. AX = 20 miles; AY = 15 miles 3. *KN* = 3.6; *LM* = 16.5 5.  $0 < \frac{ZP}{ZY} < 1$ 4.  $0 < \frac{ZP}{PV}$ 

## Reteach

1. 14 2. 30.4

- 3.  $\frac{TW}{WV} = \frac{UX}{XV} = \frac{2}{5}$ , so  $\overline{TU} \parallel \overline{WX}$  by the Conv. of the  $\triangle$  Proportionality Thm.
- 4. EF = 4; FG = 6
- 5. *RV* = 45; *TV* = 18
- 6. *NP* = 16; *LP* = 20 7. *JK* = 18; *LK* = 12


## Challenge



overlapping right triangles

- 2. similar triangles
- 1. △ABC and △DBE are overlapping right triangles; Given. 2. ∠B ~ ∠B; Reflexive Property of Congruence. 3. ∠CAB ≅ ∠EDB; All right angles are congruent (Right Angle Congruence Theorem). 4. △ABC ~ △DBE; AA Similarity (Angle-Angle Similarity Postulate).
- 4.  $\frac{15}{x+40} = \frac{6}{x}$  5. 26.7 ft
- 6. 4 cm 7.  $4\sqrt{3}$  cm
- 8.16 cm

9. 8√3 cm



**Problem Solving** 

- 1. No;  $\frac{EH}{HG} \neq \frac{EJ}{JF}$  2. 0.24 km

   3. 16
   4. 79.8 ft

   5. C
   6. H
- 7. D

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.