\qquad Date \qquad Class \qquad LEsson Practice B

7-4
 Applying Properties of Similar Triangles

Find each length.

1. BH

Verify that the given segments are parallel.
3. $\overline{P Q}$ and $\overline{N M}$
2. $M V$ \qquad

\qquad
\qquad
4. $\overline{W X}$ and $\overline{D E}$

\qquad

Find each length.

5. $S R$ and $R Q$ \qquad 6. $B E$ and $D E$ \qquad
7. In $\triangle A B C, \overline{B D}$ bisects $\angle A B C$ and $\overline{A D} \cong \overline{C D}$. Tell what kind of $\triangle A B C$ must be.

Practice B

1. 5.4
2. 20
3. $P N=66$ and $Q M=88 . \frac{L P}{P N}=\frac{9}{66}=\frac{3}{22}$ and $\frac{L Q}{Q M}=\frac{12}{88}=\frac{3}{22}$. Because $\frac{L P}{P N}=\frac{L Q}{Q M}, \overline{P Q} \|$ $\overline{N M}$ by the Conv. of the \triangle Proportionality Thm.
4. $\frac{F W}{W D}=\frac{1.5}{2.5}=\frac{3}{5}$ and $\frac{F X}{X E}=\frac{2.1}{3.5}=\frac{3}{5}$.

Because $\frac{F W}{W D}=\frac{F X}{X E}, \overline{W X} \| \overline{D E}$ by the
Conv. of the \triangle Proportionality Thm.
5. $S R=56 ; R Q=42$
6. $B E=1.25 ; D E=1 \quad$ 7. isosceles

Practice C

1. Possible answer: It is given that $\overline{E F} \| \overline{B C}$.
$\angle B$ corresponds to $\angle A E F$ and $\angle C$ corresponds to $\angle A F E$ on the transversals, so $\angle B \cong \angle A E F$ and $\angle C \cong$ $\angle A F E$. Thus, $\triangle A B C \sim \triangle A E F$ by the $A A$ Similarity Postulate. By the definition of similar polygons, $\frac{A B}{A E}=\frac{A C}{A F}$. But by the Segment Addition Postulate, $A B=A E+$ $E B$ and $A C=A F+F C$. Substitution leads to $\frac{A E+E B}{A E}=\frac{A F+F C}{A F}$. This can be simplified to $1+\frac{E B}{A E}=1+\frac{F C}{A F}$. The Subtraction Property of Equality shows that $\frac{E B}{A E}=\frac{F C}{A F}$, which can be rewritten as $\frac{A E}{E B}=\frac{A F}{F C}$.
2. $A X=20$ miles; $A Y=15$ miles
3. $K N=3.6 ; L M=16.5$
4. $0<\frac{Z P}{P Y}$
5. $0<\frac{Z P}{Z X}<1$
6. $\frac{T W}{W V}=\frac{U X}{X V}=\frac{2}{5}$, so $\overline{T U} \| \overline{W X}$ by the

Conv. of the \triangle Proportionality Thm.
4. $E F=4 ; F G=6$
5. $R V=45 ; T V=18$
6. $N P=16 ; L P=20$
7. $J K=18 ; L K=12$

Challenge

1.

 overlapping right triangles
2. similar triangles
3. 1. $\triangle A B C$ and $\triangle D B E$ are overlapping right triangles; Given. 2. $\angle B \sim \angle B$;
Reflexive Property of Congruence. 3. $\angle C A B \cong \angle E D B ;$ All right angles are congruent (Right Angle Congruence Theorem). 4. $\triangle A B C \sim \triangle D B E ; A A$ Similarity (Angle-Angle Similarity Postulate).
4. $\frac{15}{x+40}=\frac{6}{x}$
6. 4 cm
7. $4 \sqrt{3} \mathrm{~cm}$
8. 16 cm
9. $8 \sqrt{3} \mathrm{~cm}$

Problem Solving

1. No; $\frac{E H}{H G} \neq \frac{E J}{J F}$
2. 0.24 km
3. 16
4. 79.8 ft
5. C
6. H
7. D
8. 26.7 ft

. C
9. H

Reteach

1. 14
2. 30.4
